ISSN 3081-135X(Print)
ISSN 3081-1368(Online)
往期阅览
版权信息

ISSN 3081-135X(Print)
ISSN 3081-1368(Online)
          CODEN:KYYYAU
国际标准连续出版物标识符·全球唯一标识符
分配机构:美国化学文摘社(CAS)
          国图集团 CIBTC
进口备案刊号:G015Z105

编委会
主编

张雪娇
同行评议专家
副主编
唐阳/广西中医药大学附属瑞康医院
郑水泉/碧桂园生活服务集团东莞分公司 
王艳/吴春红/刘志风/荣欣/王鹤
(以上排名不分先后顺序)
编委
编委会助理
韩玲
期刊主页
在线投稿
申请编委/副主编/同行评议专家
索引/检索/存档
DOI
ICI World of Journals
哥白尼索引(波兰)

EuroPub 欧洲文献数据库(英国)
Academia.edu 学术界(美国)
长江文库 cjwk.cn(中国)
Open Access Library(OALib)
开放存取资源图书馆(美国)

ESJI欧亚科学期刊索引(哈萨克斯坦)
ResearchBib / 研究者索引(日本)
KIND CONGRESS / KC会议
Sci Online
Baidu Baike
谷歌学术 Google
百度学术 Baidu Scholar
RCCSE中国学术期刊收录(武汉大学)
Asian Science Citation Index
亚洲科学引文索引(ASCI)
SJIF科学期刊索引
范德比尔特大学(美国)
巴西联邦政府LivRe科学在线图书馆
Editing and Publishing
Quest Press Limited
Address
Unit D, 7th Floor, No. 19, Rua de Pa̍k-chiông Vai, Macau
Telephone
+853 6881 9699
Email
QuestPress@hotmail.com
Web site
https://kjyj.scionline2025.com


  首页 -> 往期阅览-> 2025年
《科技研究与应用》( ISSN3081-135X、EISSN3081-1368 ) 发布者:Quest Press 发布日期:2026/1/22
10.12479/questpress-kjyjyyy.20250211 Open Access 下载0 浏览7

 

基于深度学习的电气自动化设备能效预测与优化研究

郭鹏枭
北京普惠职道科技发展有限责任公司上海分公司,上海,200120
摘要:本文聚焦于基于深度学习的电气自动化设备能效预测与优化研究。首先阐述了研究背景与意义,指出电气自动化设备能效提升对能源节约和可持续发展的重要性,以及深度学习在能效预测与优化中的潜力。接着介绍了深度学习相关理论,包括常见模型及其特点。详细探讨了能效预测方法,涵盖数据采集与预处理、模型构建与训练、模型评估与优化等环节。深入研究了能效优化策略,包括基于预测结果的优化决策、优化算法的选择与应用、优化效果的评估与反馈。通过实际案例分析,验证了深度学习在电气自动化设备能效预测与优化中的有效性和可行性。最后总结研究成果,并对未来研究方向进行了展望。
关健词:深度学习;电气自动化设备;能效预测;能效优化
Research on Energy Efficiency Prediction and Optimization of Electrical Automation Equipment Based on Deep Learning
Pengxiao Guo
Beijing Puhui Zhidao Technology Development Co., Ltd. Shanghai Branch, Shanghai, 200120, China
Abstract: This article focuses on the research of energy efficiency prediction and optimization of electricalautomation equipment based on deep learning. Firstly, the research background and significance wereelaborated, highlighting the importance of improving energy efficiency in electrical automation equipment forenergy conservation and sustainable development, as well as the potential of deep learning in energyefficiency prediction and optimization. Then, the relevant theories of deep learning were introduced, includingcommon models and their characteristics. Detailed discussions were conducted on energy efficiencyprediction methods, covering data collection and preprocessing, model construction and training, modelevaluation and optimization, and other aspects. We conducted in-depth research on energy efficiencyoptimization strategies, including optimization decisions based on predicted results, selection and applicationof optimization algorithms, evaluation and feedback of optimization effects. Through practical case analysis,the effectiveness and feasibility of deep learning in energy efficiency prediction and optimization of electricalautomation equipment have been verified. Finally, the research results were summarized and future researchdirections were discussed.
Keywords : deep learning; Electrical automation equipment; Energy efficiency prediction; energy efficiency optimization

参考文献
[1] 李明,张伟,王芳.基于LSTM-Transformer 混合模型的工业设备能效预测方法研究[J].自动化学报,2023,49(06):1234-1245.
[2] Chen H, Liu X, Li S. Multi-modal Data Fusion forBuilding Energy Consumption Prediction Using DeepLearning[J]. IEEE Transactions on IndustrialInformatics, 2022, 18(12): 8976-8987.
[3] 王强,赵磊,刘洋.基于深度强化学习的电气自动化系统动态优化控制[J].控制理论与应用,2023,40(03):456-467.
[4] Zhou Y, Wang J, Li X. Federated Learning forCross-factory Energy Efficiency Optimization inIndustrial Internet of Things[J]. IEEE Internet ofThings Journal, 2022, 9(15): 13456-13468.
[5] 陈静,杨帆,吴昊.数字孪生驱动的电气自动化设备能效动态评估方法[J].计算机集成制造系统,2023,29(05):1456-1468.
[6] Gupta A, Singh V, Kumar P. Edge Computing-Enabled Real-time Energy Optimization for SmartGrid Systems[J]. Renewable and Sustainable EnergyReviews, 2022, 167: 112734.
论文收录证明 / 文献检索报告
Document Retrieval Certificate / Proof of Publication Indexing
作者贡献声明 / 贡献确认书
Author Contribution Statement / Certificate of Authorship Contribution
同行评审报告 / 评审意见
Peer Review Report / Peer Review Comments
利益冲突
Conflict of Interest
作者声明不存在任何利益冲突。
The author declares no conflict of interest.
版权声明
Copyright Statement
本文采用知识共享“署名 4.0 国际”许可 (CC BY 4.0) 进行许可。许可协议详情请访问: https://creativecommons.org/licenses/by/4.0/
This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). For details of the license, please visit:https://creativecommons.org/licenses/by/4.0/.
 
  Peer Review
同行评审
Editorial Services
编辑服务
Research Ethics Policy
研究伦理政策
Contributorship & Authorship
贡献者与署名
About Quest Press / Macau Sino Int. Med. Press
关于 Quest Press 与 Macau Sino Int. Med. Press
  Global Indexing
全球索引
Copyright Licensing
版权许可
Data Sharing Policy
数据共享政策
Appeal/Correction/Retraction
申诉/更正/撤回
  Online Submission
线上投稿
To the Librarian
致图书馆员
Open Access Statement
开放获取声明
Misconduct Handling Policy
处理不端行为政策
  Content Licensing
内容许可
Guidelines for Reviewers
审稿人指南
Quality Control Mechanism
质量把控机制
Academic Misconduct Screening Policy
学术不端筛查政策
  Advertising Policy
广告政策
Article Processing Charge (APC)
文章处理费
Publication Ethics Policy
出版伦理政策
Call for Editorial Board Members/Associate Editors/Peer Reviewers/Editors-in-Chief
诚邀编委、副主编、同行评审专家及主编